Relativistic full configuration interaction (RelFCI)

Description

Relativistic CI differs from non-relativistic CI primarily in the Hamiltonian which is used in the exact diagonalization. Use of a relativistic Hamiltonian includes spin-orbit coupling and the associated mixing of different spin-multiplets. It is worth noting that all of the states within a given spin multiplet are treated individually; therefore, there may be some degenerate solutions.

Prerequisites

A reference wavefunction generated by a HF, CASSCF, FCI, or DHF calculation. However, it should be noted that if the reference wavefunction is not from a previous Dirac–Hartree–Fock calculation, a DHF calculation is run automatically to generate a relativistic reference.

Keywords

maxiter (or maxiter_fci)

Description: Maximum number of iterations in the FCI algorithm.
Datatype: int
Default: 100

thresh (or thresh_fci)

Description: Threshold for the convergence of the selected CI algorithm.
Datatype: double
Default: 1.0e-10

frozen

Description: Freeze core orbitals.
Datatype: bool
Default: false

ncore

Description: Number of frozen core orbitals.
Datatype: int
Default: If frozen is true, subvalence orbitals are frozen. If false, zero.

norb

Description: Number of correlated orbitals. Any high-energy orbitals in excess of this number will be excluded.
Datatype: int
Default: All molecular orbitals except those excluded using ncore.

active

Description: Orbital indices for the orbitals to be included.
Datatype: vector<int>
Default: Frontier orbitals are used.

gaunt

Description: Turns on the Gaunt interaction in the Hamiltonian.
Datatype: bool
Default: false

breit

Description: Turns on the full Breit interaction in the Hamiltonian.
Datatype: bool
Default: value copied from “gaunt” (if gaunt is true, breit is true)
Recommendation: Usually the Breit contribution is not important for molecular properties.

charge

Description: The total charge of the system.
Datatype: int
Default: 0

state

Description: Number of states computed for each spin value.
Datatype: vector<int>
Default: There is no default; this parameter must be supplied in the input.
Note: An array of integers is supplied, where each one indicates the number of states for a given spin value. For example, the input [ 1 ] gives a singlet ground state, while [ 3, 0, 1 ] gives three singlets and one triplet (6 states total). Be careful! While the spin values you specified are used in generating the guess CI coefficients, the spin vectors will mix, and the algorithm returns the n lowest eigenstates regardless of their spin expectation values.

davidson_subspace

Description: Number of vectors retained in the limited-memory Davidson algorithm.
Datatype: int
Default: 20
Recommendation: Reduces if an insufficient amount of memory is available (do not reduce to a value lower than 3).

only_ints

Description: If true, calculates integrals and dumps to a file. This is used to interface BAGEL to an external program.
Datatype: bool
Default: false

restart

Description: Generates binary archive files that can be used to restart a calculation.
Datatype: bool
Default: false

print_thresh

Description: Threshold below which CI coefficients are not printed.
Datatype: double
Default: 0.05

spin_adapt

Description: Spin-adapts the starting guess.
Datatype: bool
Default: true
Recommendation: Use false if the error “generate_guess produced an invalid determinant” is generated.

aniso

Description: Performs magnetic anisotropy analysis (g-factors and zero-field splitting parameters).
Datatype: int

Example

A RelFCI calculation on selenium dioxide.

Sample input

{ "bagel" : [

{
 "title" : "molecule",
 "angstrom" : true,
 "basis" : "svp",
 "df_basis" : "tzvpp-jkfit",
 "geometry" : [
   { "atom" : "O",  "xyz" :  [  0.000,  0.000,  0.500  ] },
   { "atom" : "O",  "xyz" :  [  0.000,  0.000,  1.500  ] }
 ]
},

{
  "title" : "hf"
},

{
  "title" : "dhf",
  "gaunt" : false,
  "breit" : false
},

{
  "title" : "zfci",
  "spin" : 1 ,
  "state" : [0,0,1],
  "ncore" : 2,
  "norb" :  8
}

]}

from which one obtains

----------------------------
Relativistic FCI calculation
----------------------------

  * Correlation of 12 active electrons in 8 orbitals.
  * Time-reversal symmetry will be assumed.
  * gaunt    : false
  * breit    : false
  * nstate   :      3
  * nclosed  :      2
  * nact     :      8
  * nvirt    :     46
*** Geometry (Relativistic) ***
     - 3-index ints post                         0.00
     - 3-index ints prep                         0.00
     - 3-index ints                              0.02
     - 3-index ints post                         0.00

     - Geometry relativistic (total)             0.02

     - Coulomb: half trans                       0.02
     - Coulomb: metric multiply                  0.05
     - Coulomb: J operator                       0.00
     - Coulomb: K operator                       0.01
     - Coulomb: half trans                       0.01
     - Coulomb: metric multiply                  0.03
     - Coulomb: J operator                       0.00
     - Coulomb: K operator                       0.00
  * Integral transformation done. Elapsed time: 0.10

     - jop, kop                                  0.00
     - denom                                     0.00
   guess   0:   closed 11111...             open .....11.

   guess   1:   closed 11111...             open .....11.

   guess   2:   closed 11111...             open .....11.

               * guess generation                            0.00
=== Relativistic FCI iteration ===

               * sigma vector                                0.17
               * davidson                                    0.00
               * error                                       0.00
               * denominator                                 0.00
    0   0       -149.49154103     5.51e-03      0.17
    0   1       -149.49154101     5.51e-03      0.00
    0   2       -149.49152458     5.51e-03      0.00

               ..............................
                     after 18 iteration
               ..............................


   19   0  *    -149.52141423     4.71e-11      0.07
   19   1  *    -149.52140961     7.60e-11      0.00
   19   2  *    -149.52140960     7.40e-11      0.00

   * ci vector, state   0

   * ci vector, state   1

   * ci vector, state   2

   * ci vector, state   0

   * ci vector, state   1
     22222bb.  (0.6996793603,0.0199412517)
     22b2b22.  (-0.0847754623,-0.0024161521)

   * ci vector, state   2
     22222bb.  (-0.0011564447,0.6999374631)
     22b2b22.  (0.0001401229,-0.0848067421)

   * ci vector, state   0
     22222ab.  (-0.6998438169,0.0000592354)
     22222ba.  (-0.6998438169,0.0000591810)
     22a2b22.  (0.0847936889,-0.0000071744)
     22b2a22.  (0.0847936889,-0.0000071731)

   * ci vector, state   1

   * ci vector, state   2

   * ci vector, state   0

   * ci vector, state   1
     22222aa.  (0.6992592283,0.0308274507)
     22a2a22.  (-0.0847245580,-0.0037351516)

   * ci vector, state   2
     22222aa.  (0.0120504704,-0.6998597262)
     22a2a22.  (-0.0014600707,0.0847973233)

   * ci vector, state   0

   * ci vector, state   1

   * ci vector, state   2

  * METHOD: ZFCI                                 2.97



===============================================================

References

Description of Reference Reference
Efficient calculation of sigma vector P. J. Knowles and N. C. Handy, Chem. Phys. Lett. 111, 315 (1984).
General text on relativistic quantum chemistry K. G. Dyall and K. Faegri Jr., Introduction to Relativistic Quantum Chemistry (Oxford University Press, Oxford, 2007).
Restricted kinetic balance basis W. Kutzelnigg, Int. J. Quantum Chem. 25, 107 (1984).