Nuclear gradient and derivative coupling

Description

The force section can be used to compute the analytical gradient (force), the numerical gradient by finite difference, or the non-adiabatic coupling matrix elements (NACME). Analytical gradients are implemented for unrestricted Hartree–Fock (UHF), restricted open-shell Hartree–Fock (ROHF), restricted Hartree–Fock (RHF), Dirac–Hartree–Fock (DHF), Møller–Plesset perturbation theory (MP2), complete active space self consistent field (CASSCF), and multireference perturbation theory (CASPT2). For CASSCF and CASPT2, it is also possible to perform multiple evaluations of the gradients without repeating the energy calculations. In addition, the relaxed density in MP2, SA-CASSCF, and CASPT2 calculations can be printed in the Gaussian Cube format.

Keywords

Required Keywords

title

Description: The title of the type of gradient calculation being performed.
Datatype: string
Values: (force, nacme, dgrad, forces)
force: Calculates the gradient (force)
nacme: Calculates the non-adiabatic coupling matrix elements
dgrad: Difference gradient (only available for CASSCF)
forces: Calculates many gradients [available for multi-state methods, such as SA-CASSCF and (X)MS-CASPT2]
Default: N/A

method

Description: The method input block allows the user to specify one or more methods to be used in the gradient calculation. See section on input structure for more information.

grads

Description: The grads input block allows the user to specify one or more gradients to be calculated. The keywords title, target, target2, nacmtype, maxziter can be specified for each gradient evaluation. See below for example.

nacmtype

Description: Type of non-adiabatic coupling matrix element to be computed
Datatype: string
Values:
full: Full non-adiabatic coupling
interstate: Interstate coupling
etf: Non-adiabtic coupling with built-in electronic translational factor (ETF)
noweight: Interstate coupling without weighting it by energy gap
Default: full.

Optional Keywords

numerical

Description: The gradients will be computed by finite difference.
Datatype: bool
Values:
true: Uses finite difference
false : Uses analytical gradient
Default: false
Recommendation: If available, use analytical gradient. If analytical gradient is not available, BAGEL automatically switches to numerical gradient.

dx

Description: The step size used in the displacements in the finite difference calculations. The units are bohr.
Datatype: double precision
Default: 1.0e-3

target

Description: The target state for the energy and gradient evaluation (e.g. which state in a state-averaged CASSCF calculation)
Datatype: int
Values:
int: ground state = 0
Default: 0

target2

Description: In an NACME or DGRAD calculation, target2 designates the target state for the second state.
Datatype: int
Values:
int: first exited state = 1
Default: 1

dipole

Description: Calculate unrelaxed (transition) dipole moments, available in SA-CASSCF and XMS-CASPT2.
Datatype: bool
Default: false

ciderivative

Description: Evaluate the CI derivative and full gradient in XMS-CASPT2. If false, only unrelaxed density will be calculated.
Datatype: bool
Default: true

export

Description: This option will export the nuclear gradient to a text file.
Datatype: bool
Default: false
Recommendation: This is used to interface with the QM/MM program. See section on non-adiabatic dynamics.

export_single

Description: This option will export the nuclear gradient to a text file for a single state.
Datatype: bool
Default: false
Recommendation: This is used to interface with the QM/MM program. See section on non-adiabatic dynamics.

maxziter

Description: Maximum number of Z-vector iterations for gradient evaluation. Applies to SA-CASSCF, CASPT2, and MP2 calculations.
Datatype: int
Default: 100
Recommendation: Increase the value when Z-vector equation does not converge.

nproc

Description: The numerical gradient code is embarrassingly parallelized so that the displacements in the finite difference calculations can be run at the same time. The nproc keyword allows the user to specify the number of MPI processes to be used for each energy calculation.
Datatype: int
Default: 1

density_print

Description: Print relaxed densities in the Gaussian Cube format. Applies to SA-CASSCF, CASPT2, and MP2 calculations. The options for density printing can be specified in moprint block (see below for example and here for the keywords).
Datatype: bool
Default: false

Example

The benzophenone molecule

alternate text

The benzophenone molecule with carbon atoms in grey, oxygen in red, and hydrogen in white.

Sample input: force

 { "bagel" : [

 {
   "title" : "molecule",
   "basis" : "cc-pvdz",
   "df_basis" : "cc-pvdz-jkfit",
   "angstrom" : false,
   "geometry" : [
   { "atom" : "C", "xyz" : [     -2.002493,     -2.027773,      0.004882 ] },
   { "atom" : "C", "xyz" : [     -2.506057,     -4.613700,      0.009896 ] },
   { "atom" : "C", "xyz" : [      0.536515,     -1.276360,      0.003515 ] },
   { "atom" : "C", "xyz" : [     -0.558724,     -6.375134,      0.013503 ] },
   { "atom" : "H", "xyz" : [     -4.396140,     -5.341490,      0.011057 ] },
   { "atom" : "C", "xyz" : [      2.478233,     -3.024614,      0.007049 ] },
   { "atom" : "H", "xyz" : [      0.959539,      0.714937,     -0.000292 ] },
   { "atom" : "C", "xyz" : [      1.936441,     -5.592475,      0.012127 ] },
   { "atom" : "H", "xyz" : [     -1.012481,     -8.367883,      0.017419 ] },
   { "atom" : "H", "xyz" : [      4.418042,     -2.380738,      0.005919 ] },
   { "atom" : "H", "xyz" : [      3.448750,     -6.968581,      0.014980 ] },
   { "atom" : "C", "xyz" : [     -6.758666,     -0.057378,      0.001157 ] },
   { "atom" : "C", "xyz" : [     -8.231109,     -2.241648,      0.000224 ] },
   { "atom" : "C", "xyz" : [     -8.022986,      2.269249,      0.001194 ] },
   { "atom" : "C", "xyz" : [    -10.853532,     -2.110536,     -0.000769 ] },
   { "atom" : "H", "xyz" : [     -7.410047,     -4.093049,      0.000224 ] },
   { "atom" : "C", "xyz" : [    -10.632155,      2.405932,      0.000369 ] },
   { "atom" : "H", "xyz" : [     -6.913797,      3.976253,      0.001805 ] },
   { "atom" : "C", "xyz" : [    -12.064741,      0.207004,     -0.000695 ] },
   { "atom" : "H", "xyz" : [    -11.941318,     -3.840822,     -0.001614 ] },
   { "atom" : "H", "xyz" : [    -11.548963,      4.232744,      0.000447 ] },
   { "atom" : "H", "xyz" : [    -14.107194,      0.302907,     -0.001460 ] },
   { "atom" : "C", "xyz" : [     -3.892311,      0.136360,      0.001267 ] },
   { "atom" : "O", "xyz" : [     -3.026383,      2.227189,     -0.001563 ] }
   ]
 },

 {
   "title" : "force",
    "method" : [ {
     "title" : "hf",
     "thresh" : 1.0e-12
   } ]
 }
]}

Using the same molecule block, a XMS-CASPT2 analytical gradient calculation can be performed. In this particular example as is often the case, the active keyword is used to select the orbitals for the active space that includes 4 electrons and 3 orbitals. Three sets of \(\pi\) and \(\pi^*\) orbitals localized on the phenyl rings are included along with one non-bonding orbital (oxygen lone pair). The CASSCF orbitals are state-averaged over two states.

{
  "title" : "casscf",
  "nstate" : 2,
  "nclosed" : 46,
  "nact" : 3,
  "active" : [37, 44, 49]
},

{
  "title" : "force",
  "target" : 0,
  "method" : [ {
    "title" : "caspt2",
    "smith" : {
      "method" : "caspt2",
      "ms" : "true",
      "xms" : "true",
      "sssr" : "true",
      "shift" : 0.2,
      "frozen" : true
    },
    "nstate" : 2,
    "nact" : 3,
    "nclosed" : 46
  } ]
}

Sample input: NACME and DGRAD

{
 "title" : "nacme",
 "target" : 0,
 "target2" : 1,
 "method" : [ {
   "title" : "caspt2",
   "smith" : {
     "method" : "caspt2",
     "ms" : "true",
     "xms" : "true",
     "sssr" : "true",
     "shift" : 0.2,
     "frozen" : true
   },
   "nstate" : 3,
   "nact" : 7,
   "nclosed" : 44
 } ]
}

Using the keyword forces, you can run multiple gradient or derivative coupling calculations without repeating the energy calculations. The example below evaluates the nuclear gradient of the energy of the ground state, the first excited state, and the interstate coupling vector (nacmtype is interstate) between these two states.

{
 "title" : "forces",
 "grads" : [
   { "title" : "force", "target" : 0 },
   { "title" : "force", "target" : 1 },
   { "title" : "nacme", "target" : 0, "target2" : 1, "nacmtype" : "interstate" }
 ],
 "method" : [ {
   "title" : "caspt2",
   "smith" : {
     "method" : "caspt2",
     "ms" : "true",
     "xms" : "true",
     "sssr" : "true",
     "shift" : 0.2,
     "frozen" : true
   },
   "nstate" : 3,
   "nact" : 7,
   "nclosed" : 44
 } ]
}

Sample input: Printing dipole moments

You can use the keyword dipole to compute the dipole moments for all the states, the transition dipole moments and oscillator strengths of all possible pairs of electronic states.

{
 "title" : "forces",
 "dipole" : "true",
 "method" : [ {
   "title" : "caspt2",
   "smith" : {
     "method" : "caspt2",
     "ms" : "true",
     "xms" : "true",
     "sssr" : "true",
     "shift" : 0.2,
     "frozen" : true
   },
   "nstate" : 3,
   "nact" : 7,
   "nclosed" : 44
 } ]
}

Alternatively, for CASPT2, you can use the keyword "ciderivative" : "false" to evaluate the dipole moments, transition dipole moments and oscillator strengths of selected states, without computing the CI derivative term and gradient. The example below evaluates the dipole moments of state 0, state 1, and transition dipole moment of the state 0 – state 1 transition.

{
 "title" : "forces",
 "grads" : [
   { "title" : "force", "target" : 0, "ciderivative" : "false" },
   { "title" : "force", "target" : 1, "ciderivative" : "false" },
   { "title" : "nacme", "target" : 0, "target2" : 1, "nacmtype" : "interstate", "ciderivative" : "false" }
 ],
 "method" : [ {
   "title" : "caspt2",
   "smith" : {
     "method" : "caspt2",
     "ms" : "true",
     "xms" : "true",
     "sssr" : "true",
     "shift" : 0.2,
     "frozen" : true
   },
   "nstate" : 3,
   "nact" : 7,
   "nclosed" : 44
 } ]
}

Sample input: Printing relaxed density

The relaxed density in MP2, SA-CASSCF, and CASPT2 gradient calculations can be printed in the Gaussian Cube format (density.cub file) by setting the keyword density_print to true (see the example below).

{ "bagel" : [

{
  "title" : "molecule",
  "basis" : "svp",
  "df_basis" : "svp-jkfit",
  "geometry" : [
    { "atom" : "Li", "xyz" : [ 0.000000, 0.000000, 6.000000] },
    { "atom" : "F",  "xyz" : [ 0.000000, 0.000000, 0.000000] }
  ]
},

{
  "title" : "force",
  "target" : 0,
  "density_print" : true,
  "moprint" : {
    "inc_size" : [ 0.20, 0.20, 0.20]
  },
  "method" : [ {
    "title" : "caspt2",
    "smith" : {
      "method" : "caspt2",
      "shift" : 0.2,
      "frozen" : true
    },
    "nstate" : 4,
    "nact" : 4,
    "nclosed" : 3
  } ]
}

]}

Using the keyword forces, you can print multiple relaxed densities without repeating the energy calculations. The example below prints all the XMS-CASPT2 relaxed densities.

{
  "title" : "forces",
  "grads" : [
    { "title" : "force", "target" : 0, "density_print" : true, "moprint" : { "density_filename" : "density_0" } },
    { "title" : "force", "target" : 1, "density_print" : true, "moprint" : { "density_filename" : "density_1" } },
    { "title" : "force", "target" : 2, "density_print" : true, "moprint" : { "density_filename" : "density_2" } },
    { "title" : "force", "target" : 3, "density_print" : true, "moprint" : { "density_filename" : "density_3" } }
  ],
  "method" : [ {
    "title" : "caspt2",
    "smith" : {
      "method" : "caspt2",
      "ms" : "true",
      "xms" : "true",
      "sssr" : "true",
      "shift" : 0.2,
      "frozen" : true
    },
    "nstate" : 4,
    "nact" : 4,
    "nclosed" : 3
  } ]
}

References

BAGEL References

Description of Reference

Reference

SS-CASPT2 gradient

M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015).

(X)MS-CASPT2 gradient

B. Vlaisavljevich and T. Shiozaki, J. Chem. Theory Comput. 12, 3781 (2016).

(X)MS-CASPT2 derivative coupling

J. W. Park and T. Shiozaki, J. Chem. Theory Comput. 13, 2561 (2017).

Current (X)MS-CASPT2 gradient algorithm

J. W. Park and T. Shiozaki, J. Chem. Theory Comput. 13, 3676 (2017).

General References

Description of Reference

Reference

General review of gradient methods

P. Pulay, WIREs Comput. Mol. Sci. 4, 169-181 (2014).